Road vehicle automation in sustainable urban mobility planning

Practitioner Briefing
About
This Practitioner Briefing has been developed within the framework of the CoEXist project, funded under the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 723201.

Title
Road vehicle automation in sustainable urban mobility planning

Author(s)
Wolfgang Backhaus, Siegfried Rupprecht and Daniel Franco, Rupprecht Consult – Forschung & Beratung GmbH

Contributor(s)

Reviewer(s)
Wulf-Holger Arndt (Technische Universität Berlin), Marko Jandrisits (European Commission)

Acknowledgement
This publication is made possible thanks to the contributions made by organisations involved in the CoEXist project and the WISE-ACT COST Action, all of whom are credited for their respective contributions.

Disclaimer
This is a draft document intended for discussion at the 2019 SUMP Conference. The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Commission. The European Commission is not responsible for any use that may be made of the information contained herein.

Copyright
The content of this draft document may only be used for the purpose of providing feedback. Publication of any part of this version is prohibited, unless specifically permitted. All images in this publication are the property of the organisations or individuals credited. This publication is the copyright of its authors. The final version of this document is expected to be governed by a Creative Commons License CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International). In summary, this means that use of this publication is permitted under the following terms:

- Attribution — You quote the document as provided above, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Further details at https://creativecommons.org/licenses/by-nc-sa/4.0/. The legal text of the license is available at: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Cover picture: ©Richard Huber (Creative Commons Attribution-Share Alike 4.0 International)

Contact
Rupprecht Consult – Forschung & Beratung GmbH
Wolfgang Backhaus (w.backhaus@rupprecht-consult.eu)
Clever Straße 13-15, 50668 Köln, Germany

European Commission
Directorate-General for Mobility and Transport
Unit B4 - Sustainable & Intelligent Transport
Rue Jean-Andre de Mot 28, B-1049 Brussels

June 2019
TABLE OF CONTENTS

1. EXECUTIVE SUMMARY.. 5

2. INTRODUCTION.. 6

3. THE 8 SUMP PRINCIPLES IN THE CONTEXT OF ROAD VEHICLE AUTOMATION......................... 7

4. SUMP STEPS FOR ROAD VEHICLE AUTOMATION... 11
 4.1 PREPARATION AND ANALYSIS .. 12
 4.1.1 Initial commitment and setting up working structures ... 12
 4.1.2 Assessing available resources and planning requirements .. 15
 4.1.3 Analyse problems and opportunities .. 15
 4.2 STRATEGY DEVELOPMENT .. 16
 4.2.1 Lay out the different potential futures of the mobility in your city with CAVs 16
 4.2.2 Set a vision for your mobility ambitions with CAVs and ensure commitment for realising this vision ... 16
 4.2.3 Agree on measurable targets and co-create the city’s mobility strategy 17
 4.3 MEASURE PLANNING .. 18
 4.3.1 Institutional adjustments .. 19
 4.3.2 Infrastructural adjustments .. 19
 4.3.3 Collective mobility services .. 19
 4.3.4 Policy measures .. 19
 4.4 IMPLEMENTATION AND MONITORING ... 20

5. KEY ASPECTS OF CAD PLANNING .. 21
 5.1 LEARN ABOUT AND EXPERIENCE ROAD VEHICLE AUTOMATION .. 21
 5.2 TRAFFIC FLOW AND TRANSPORT DEMAND MODELLING .. 22
 5.3 ASSESSING THE IMPACTS OF CAVS IN URBAN MOBILITY AND ROAD INFRASTRUCTURE 23
 5.4 CAD AND PUBLIC TRANSPORT ... 23
 5.5 EU-FUNDED PROJECTS FOR THE DEVELOPMENT OF AUTOMATED DRIVING 24

6. LIST OF REFERENCES ... 25
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV</td>
<td>Automated Vehicle</td>
</tr>
<tr>
<td>CAD</td>
<td>Connected and Automated Driving</td>
</tr>
<tr>
<td>CAM</td>
<td>Connected and Automated Mobility</td>
</tr>
<tr>
<td>CAV</td>
<td>Connected and Automated Vehicle</td>
</tr>
<tr>
<td>C-ITS</td>
<td>Cooperative Intelligent Transport Systems</td>
</tr>
<tr>
<td>FUA</td>
<td>Functional Urban Area</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>SUMP</td>
<td>Sustainable Urban Mobility Planning</td>
</tr>
<tr>
<td>SWOT</td>
<td>Strengths, Weaknesses, Opportunities and Threats analysis</td>
</tr>
</tbody>
</table>
1. Executive summary

Vehicle manufacturers have already started with the introduction of vehicles with more and more connected and automated functionalities. But although steps towards the deployment of connected and automated vehicles (CAVs) are progressing fast, the success of the transition towards CAVs will largely be determined by introducing this new driving technology into the existing sustainable urban mobility planning processes of a city.

However, most European local authorities have a lot of uncertainties about the introduction of CAVs on their road network and are missing guidance on how they can ensure its alignment with their policy goals. Many cities question whether CAVs will fulfil the promises of reducing road space demand, improving mobility for all and improve safety. Without good preparation and planning, CAVs could actually amplify the urban mobility problems that cities are currently already facing.

As part of the updating process of the European Guidelines for Developing and Implementing a Sustainable Urban Mobility Plan (2019), the aim of this practitioners’ briefing is to provide guidance and best practice examples in order to increase the capacity of cities to introduce CAVs into their sustainable urban mobility planning processes. This will include a detailed consideration of Connected and Automated Driving (CAD) from a planning perspective, mapping for the main uncertainties resulting from CAVs and guiding principles on how to mitigate these uncertainties. Further, it will provide recommendation on how the eight SUMP principles can be applied in the context of CAVs.
2. Introduction

After the initial technological euphoria that predicted the deployment of connected and automated vehicles (CAVs) by the end of the decade, most vehicle manufacturers and transportation network companies had to readjust the dates they are planning to introduce fully automated vehicles that can operate in all or most operational design domains. Some vehicle manufacturers have even started questioning whether fully automated vehicles are actually possible and it became widely accepted that automated vehicles will be relying on extensive connected services to even operate in lower levels of automation. The ERTRAC Automated Driving Roadmap (ERTRAC 2019) provides a comprehensive overview of the different automated functionalities of CAVs and their expected market introduction. The CAD Europe site, currently coordinated by the ARCADE project, provides an extensive library of the latest developments in the fast-changing field of connected and automated driving (ARCADE 2019). Even though the deployment of CAVs is not as fast as some anticipated, it is clear that more and more vehicles with automated functionalities are being deployed and that enabling technologies, such as 5G and ITS G5, will significantly increase the ability of CAVs to handle more complex operational design domains. The initial fear that cities will be overrun by this technology (luckily) had not materialised, yet, but this is not a justification for local authorities to continue with a “wait and see approach”. The time should be wisely used to better prepare for the deployment of CAVs—which will certainly come.

Connected and automated driving (CAD) will have significant impacts on most transport and urban planning related activities of a city. The Polis policy paper on “Road Vehicle Automation and Cities and Regions” (POLIS 2018) provides a structured overview of the most pressing potential impacts resulting from the deployment of CAVs. The paper focuses on the potential impacts on road safety, traffic efficiency, infrastructure, socioeconomic aspects, travel behaviour and spatial planning. There is a high degree of uncertainty surrounding the exact impacts as nobody, at this stage, can really predict how the technology will be used and whether the positive aspects will out-weight the negative ones. Many local authorities are overwhelmed by the sheer scale of the uncertainties surrounding the deployment of CAVs, which results in a dangerous form of inertia. Local authorities need to take a leading role in dealing with the uncertainties in a structured way to break out of this inertia.

To ensure that the roll out of CAVs is in line with sustainable urban mobility goals, local authorities will have to play a key role and should take the lead with proactive planning approaches. This begins with planning for the introduction of CAVs as early as possible, to minimise the potential negative impacts and more importantly make the most of the opportunity to influence the paradigm shift into a more sustainable urban mobility vision. The UITP Policy Brief on ‘Autonomous vehicles: a potential game changer’ (UITP 2017) clearly sets out that cities need to now foster a culture of sharing to avoid single occupancy or empty CAVs in city centres in the future. An uncontrolled deployment of CAVs in cities could lead to conflicts between CAV users and nonusers due to opposing transport planning needs of liveable versus CAV-friendly cities.

The promises of CAVs to improve traffic and space efficiency, enhance safety and improve mobility for all, will only be fulfilled when local authorities have the capability to shape the deployment of CAVs to their needs. Without it, CAVs will certainly worsen the urban mobility problems that local authorities are currently facing.
There is a clear need for considering Connected and Automated Driving in Sustainable Urban Mobility Planning processes, but its purpose should not be misunderstood as endorsing the disruptive technologies surrounding CAVs and their impacts, but rather empowering the local authorities to critically review the anticipated technological changes and shape the future according to their expectations.

This is defined in the CoEXist project as ‘Automation-readiness’ (CoEXist 2018), i.e. the capability of making structured and informed decisions about the comprehensive deployment of CAVs in a mixed road environment, and it requires:

- A clear awareness of the technology underpinning CAVs, the different functional uses and business models for CAVs and a high-level understanding of the impacts different deployment scenarios can have on traffic, quality of life and stakeholders involved in local transport planning.
- The institutional capacity to plan for a future with CAVs by using tools that accurately represent CAV behaviour in order to identify the impacts of different CAV deployment scenarios.
- A strategic approach in planning a wide range of measures that will ensure a deployment of CAVs, which supports higher level mobility goals, which can be achieved by following the SUMP concept and its principles.

This document aims to serve as a guide for practitioners and other stakeholders on integrating connected and automated road vehicles in their sustainable urban mobility planning processes. It is heavily based on CoEXist’s Automation-ready framework (CoEXist 2018).

3. The 8 SUMP principles in the context of Road Vehicle Automation

The 8 SUMP principles:

1. Plan for sustainable mobility in the ‘functional city’

Despite the uncertainties, authorities are afforded an opportunity to reflect already today on how they would like to use CAD to serve their mobility objectives. However, policy makers at EU and national level should provide regional and local authorities with clear regulatory frameworks to start thinking about local/regional policies to best exploit positive impacts of CAD. The impacts of CAD may, on the one hand transform the way in which people travel, e.g. people would travel greater distances with faster, more efficient and comfortable vehicles, and on the other hand, also change several aspects of urban mobility planning, e.g. with more data-related planning or a shift in curb side management, which might become more important to plan pick-up and drop-off zones for CAD services. To manage these transformations, authorities need to understand their nature and consequences, in order to make informed decisions, and learn how to prepare for and influence them as a local or regional authority.

Relevant questions:
• How do institutional and governance structures in local authorities need to change to address CAM?
• On which institutional level does CAD needs to be addressed in order to effectively respond to the challenge? And in that sense, how to define the ‘functional city’, if (1) actions are needed at higher levels (national, regional), and (2) travel behaviour might change, with longer commuter distances, which would expand current FUA?

2. **Develop a long-term vision and a clear implementation plan**

Authorities today already have to deal with the topic of CAD despite the persistent high levels of uncertainties. They should think ahead, clearly define goals (e.g. road space allocation, public transport prioritisation) and link the introduction of CAD, from the beginning, to their overarching mobility objectives to avoid negative developments that are difficult to change afterwards. A city worth living in must remain the vision. The introduction of CAVs is not an end in itself, but shall serve this vision.

Relevant questions:
• How should measures and policies towards managing CAD deployment be implemented, when there are so many uncertainties on how this deployment will unfold?
• How does automation align with different institutional goals and with the city’s vision?
• CAD could introduce various social challenges and affect liveability. How would this affect the city’s vision and policy goals?
• How could liveability, including equity and accessibility, in cities be affected by CAD? What can cities do mitigate potential issues?

3. **Assess current and future performance**

Due to the lack of experience in urban areas with CAD and reliable data of CAVs, the impact assessment is more like crystal ball reading. While CAD may bring some benefits, like less congestion, increased space efficiency and less accidents, there is also the possibility that CAD might lead to increased congestion, negative environmental and health impacts, if public transport, walking and cycling are discouraged. However, methodologies like SWOT analysis and scenario development foster discussions and consensus on potential impacts of CAD. In addition, more and more research projects deal with the topic and develop methods for impact assessment or modelling transport with CAVs.

Relevant questions:
• Considering the high degree of uncertainties, how should CAD be considered in transport assessment today?
• What are the basic scenarios that should be considered in SUMP 2.0 and European cities?
• How can cities develop basis scenarios for CAD deployment?
• How to consider/assess the effects of CAD in traffic flow and travel demand? How can it be modelled and what obstacles/difficulties arise?

4. **Develop all transport modes in an integrated manner**

CAD should be integrated into a complete mobility solution, with high capacity public transport as a backbone and encouraging walking and cycling. Based on such a balanced
Road vehicle automation in sustainable urban mobility planning

integrated multimodal mobility offer, CAD can support excellent options for sustainable door-to-door mobility. Therefore, the safe interaction with other road users is a key issue, and positive impacts like traffic efficiency gains may only materialise in the medium to long-term, once CAVs are well tried and the penetration rate is high. The interim transition phase might be less positive when CAD is interrupted by pedestrian crossings or conventional cars. Furthermore, it is not inconceivable that the growth in CAD with shared fleets may herald the end of public transport as we know it today. The transformation of public transport, aiming to exploit the advantages of CAD (e.g., significant reductions in operational costs), new business models and mobility services, need to be considered. In such scenarios where CAD leads to fewer privately owned cars and other public transport services, less revenues from parking fees and fines as well as from public transport tickets sale, authorities need to create new streams of public income and business models.

Relevant questions:

- How does CAD relate with, and which changes could it bring for each different transport mode?
- How to assess the interactions of automated vehicles with conventional vehicles and other road users, in a mixed road environment?
- How does it affect the business/operating models of other modes of transport (both public and private)?

5. Cooperate across institutional boundaries

CAD based mobility needs a system approach and cannot be planned by transport authorities alone. However, authorities should re-assess the needed competences of public transport authorities to enable a planning of a sustainable urban mobility offer based on CAD. In addition, cross-department cooperation, including for example urban/spatial planning, environmental, economic affairs departments, is needed. New institutional structures like horizontal working groups / departments or cross-border urban mobility managers (that allow the integration and coordination of public transport, new mobility services and platforms), as well as new skills and competences, e.g. data handling and analysis, are needed to plan and introduce CAD.

Relevant questions:

- How do institutional structures in local/regional authorities need to change to address CAD?
- What are promising cooperation and governance models to address CAD?

6. Involve citizens and relevant stakeholders

CAD can help to develop a transport offer in FUAs combining high capacity and individual modes that responds to citizens needs and delivers on public goals like accessibility, inclusion and liveability. Authorities should lead this path, discuss solutions and create synergies with various groups of relevant stakeholders, such as vehicle manufacturers, technology and transport service providers. Authorities should also involve citizens by polling their acceptance and increase awareness and information levels by educating citizens through relevant training and events (e.g. WISE-ACT open events - https://wise-act.eu). Pilot demonstrations can create confidence by showing how to best use CAD in the mobility system.
Relevant questions:

- How do you facilitate a participatory social dialogue about such a complex and technical topic with so many uncertainties?
- How to allow an effective/beneficial discussion around automation, considering low levels of awareness and knowledge of the topic, and the complexity of handling the related ambiguities?
- Who are the stakeholders that should be involved in planning for CAD and new mobility services, e.g. CAD service providers? And how should authorities engage with them?
- How can business opportunities effectively serve citizen needs?

7. Arrange for monitoring and evaluation

Connected and Automated Driving, and the transformation of urban mobility through its implementation on different transport modes (both public and private, and for passenger as well as freight transport), should be evaluated in the same way conventional modes and technologies are: by monitoring it’s impacts on overall mobility objectives, e.g. modal split shift towards sustainable modes, and ensuring a better quality of life. However, the technological differences in CAD do require the identification of adequate metrics to assess the impact of CAVs, and cities need to consider changes in their planning practices to ensure its monitoring and evaluation is done correctly. Considering the its potential effects on urban mobility, KPIs for evaluating CAD performance could be traffic flow efficiency, space efficiency or safety. Besides, authorities should be prepared to collect relevant data for the CAD performance monitoring. Therefore, it should be ensured that different mobility services can communicate to avoid closed systems.

Relevant questions:

- Considering the high degree of uncertainties, how should CAD be considered in transport assessment today?
- What indicators best measure the impact of CAD, in accordance to each city’s policy goals?

8. Assure quality

Following the SUMP process and answering the relevant questions listed in the present document itself can be considered as a quality assurance approach. In addition, exchanging knowledge and experience with FUAs that made already experiences with CAD pilots and trials should be encouraged. Authorities should adapt given regulation to allow testing of CAVs to take advantage of insights and learnings based on CAD-related innovations.

Relevant questions:

- How to plan effectively and make informed decisions on an uncertain and still developing topic?
- How to plan for innovations (even before their deployment)?
- How to ensure CAD deployment and resultant mobility services are in line with the overall SUMP objectives?
4. SUMP steps for Road Vehicle Automation

This section reflects in the main factors and key questions that need to be considered to effectively include connected and automated road vehicle in the SUMP process, aiming to support and empower planning practitioners and mobility stakeholders, to take on the challenge of actively addressing CAD in their mobility planning practices. By reducing uncertainties and sticking to the core planning principles, local authorities can take a leading role, rather than merely being observers of the technological developments.

![Image of SUMP Cycle](Rupprecht-Consult, 2019)

Figure 1: SUMP Cycle (Rupprecht-Consult, 2019)
4.1 Preparation and Analysis

The success of the transition towards higher penetration levels of CAVs will largely be determined by integrating them into existing sustainable urban mobility planning processes (i.e. SUMP). However, today there are hardly any strategic transport plans in Europe that properly address the technology and the resulting impacts. Incorporating CAD into SUMP processes, requires an explicit decision and a strong commitment to address the challenges and opportunities that it generates, and adequately prepare to handle them.

A broad participatory approach is key to ensure that CAVs are being deployed to the benefit of all and not the few. Not one single actor is able to find the answers to all these complex issues. An effective working structure needs to be established, ensuring the active participation of citizens and key stakeholders, whilst steering institutional cooperation and coordination at different government levels. Furthermore, structured coordination and information exchange among cities, at the national, European and global scales, is fundamental to establish consolidated needs and harmonize markets, allowing the creation of economies of scale that ensure the optimal development of new mobility services. The European Commission strongly supports such exchange, and has set up an informal group of experts, the Single Platform for open road testing and pre-deployment of cooperative, connected, automated and autonomous mobility consisting of up to 100 experts and appointed for a period of three years, which will provide advice and support to the Commission in the field of testing and pre-deployment activities for Cooperative, Connected, Automated and Autonomous Mobility – CCAM (European Commission 2019).

Citizen participation helps to understand the needs of the future users of the system and to cater to them, also giving an opportunity for the municipality to understand how mobility services can be improved, and in particular, how connected and automated vehicles can be of help in the future transport systems by improving accessibility and equity of services. Providing a platform for citizens to be heard, increases acceptability and furthermore, the
perception of users gives an insight about the possible threats (e.g. reduction in the value of travel time, since it can actually be a productive time and increase comfort of CAV usage) and enhances proactive mitigation strategies (e.g. pricing schemes) by engaging citizens as part of developing a common solution. An example of this is the UK Autodrive project (UK Autodrive 2017) that conducted a public attitude survey (see case study below).

Involving Citizens

A key to developing novel solutions to tackle mobility challenges in cities is to gather the acceptance of the general public. Hence, involvement of citizens is vital to enhance take up. A good practice example is the UK Autodrive project’s public attitudes survey. As part of the project, the University of Cambridge carried out a national survey of public attitudes towards self-driving vehicles (SDVs). The survey was conducted in October-November 2016, comprising 49 questions, and gathered 3000 responses. The results of this survey were used as basis for a deeper exploration of public attitudes through local focus groups.

Further Details:

Figure 3: Preferred means of booking to access shared public transport systems (CoEXist 2018)

Planning for AVs and reducing uncertainties also requires the involvement of stakeholders that are not traditionally part of mobility planning. Municipalities alone cannot solve mobility challenges and thus need to collaborate with mobility service and technology providers from the private sector. Engaging with OEMs, technology companies, and new mobility service providers is an important aspect in co-creating solutions that benefit all: businesses, government, operators, and people. This also helps in developing a common vision between often conflicting objectives of different organisations, when planning for the future of mobility in cities. Cities and authorities will get a chance to have a better understanding of the topic, and increase their capacity to implement the right policies and regulations to support innovation and restrict unfair competition. Examples of platforms bringing together stakeholders from different areas are Antwerp’s Marketplace for Mobility (Van Der Pas 2017), Gothenburg’s DriveME (City of Gothenburg 2017) (see Figure 4) or – on a higher level - the German platform for urban mobility (Plattform Urbane Mobilität 2017) which involves cities and OEMs for developing jointly mobility solutions for the future. Bringing together different stakeholders’ knowledge will foster innovation development in terms of the application of new technologies and opening up new markets for building win-win-situations for the involved stakeholders. Still, besides the involvement of cities and industry partners,
the participation of civil society groups is important to increase acceptability and help co-create solutions that are user-centric.

Establishing an innovation platform (Gothenburg)

Engaging with stakeholders.

Figure 4: Framework of Drive Me innovation platform for Gothenburg (CoEXist 2018)
4.1.2 Assessing available resources and planning requirements

Planning for such an innovative field involves becoming aware of the technological advancements and capabilities of connected and automated vehicles (and the associated features) and understanding the opinions, needs and concerns of the citizens at an early stage. The key here is to develop an awareness of what the deployment of automated vehicles and resulting impacts means from a local authority perspective.

Besides, innovations for sustainable urban mobility solutions are more often based on data (and linked information and knowledge) than on concrete or physical infrastructure. Planning of sustainable urban mobility, in particular in a data-heavy environment of CAV-based solutions, needs to be aligned and should keep up with technological advancements to be able to effectively and proactively plan for future technological changes that impact mobility in cities.

Local practitioners responsible for planning and managing mobility in cities, will have to develop new skills and competencies regarding data handling and analysis, modelling and impact assessment of automated road transport. More and more new technologies available for deployment in supporting traffic management, e.g. C-ITS, will become available and authorities and cities need to ensure that technical capacities are up to the level to be capable to use new tools and deploy state-of-the-art measures. Lessons learned from activities in other projects and cities, also allows to reach a better understanding of the related challenges and opportunities. The ARCADE project holds a inventory of all CAD related activities at EU level (ARCADE 2019).

CAPITAL ITS and C-ITS e-learning

The main aim of the CAPITAL project is to create a collaborative capacity building community and deployment programme to support public and private stakeholders implementing cooperative and Intelligent Transport Systems (ITS & C-ITS) with training and educational resources, while also raising awareness of the services and benefits available. Over nine e-learning courses are available on www.its-elearning.eu.

Figure 5: Extract from the CAPITAL project website (CAPITAL 2018)

4.1.3 Analyse problems and opportunities

When talking about Connected and Automated Driving, it is vital to understand that a key aspect that defines its particular planning context is generalised uncertainty. In this sense, the focus lies much more on flexible and diverse scenario development and the assessment of their potential impacts, than when dealing with other modes of transport. CAD also poses a higher technological-focused context, which calls for additional knowledge.

The described conditions, commands for a detailed analysis of the effects CAV could have on the current mobility situation, and its relation with all modes of transport. The potential (positive or negative) effects on public transport need to be carefully considered. Besides, it
requires the knowledge of state-of-the-art developments in the field and learning from relevant experiences of other cities in their attempts to address CAD.

Still for several years to come, cities will have to manage a mixed-road environment, where CAVs and conventional vehicles will need to co-exist, and also safely interact with other road users. This will raise not only technical and operational challenges, but also in terms of the normative context. It is also important to perform an analysis of the current legal framework and its relation to CAD, identifying gaps in the regulation and steering the discussion across political levels.

4.2 Strategy Development

4.2.1 Lay out the different potential futures of the mobility in your city with CAVs.

When drawing up the potential future mobility conditions in the city in relation to a field with such unclear perspectives as CAD, it is important to consider various possible scenarios, reflecting on the variety of factors and dimensions define them (such as, for example, proactive planning, car-ownership, individual travel behaviour and ride-sharing), and then comparing the benefits and threats against each other. Developing and illustrating possible future scenarios is a step towards understanding the potential benefits and drawbacks of introducing a certain technology into the transport system. Prioritising certain future scenarios can also be a guide on how to develop policies and pilots to reach that scenario.

4.2.2 Set a vision for your mobility ambitions with CAVs and ensure commitment for realising this vision.

Setting a vision clarifies the priorities that you will have as a city. Clearly addressing new mobility solutions based on CAVs does not just set a path to exploring new solutions in tackling current and future challenges in mobility, but also makes the ambitions of a city clearer to other stakeholders and potential independent developers interested in becoming part of the solution. Examples for identifying different potential governing scenarios of CAV
Road vehicle automation in sustainable urban mobility planning

Rollout and prioritising scenarios that are desirable in relation to the sustainable mobility goals of a country are documented – inter alia – for Austria (bmvit 2016), Sweden (KTH Royal Institute of Technology 2017) and Germany (BMVI 2015).

An example of a city developing a vision for the future with CAVs is Milton Keynes, UK (Milton Keynes 2018). Milton Keynes developed a Mobility Strategy as a reference point for how the town wishes to maintain, improve and develop its transport system up to 2036. It also shows how Milton Keynes wishes to begin investing in the short term in the development of the town’s long-term future transport system to 2050 to ensure connectivity to new infrastructure projects. The strategy includes the ambition to “develop and promote a ‘First Last Mile’ culture for future technologies such as autonomous and connected vehicles and sustainable connectivity”.

4.2.3 Agree on measurable targets and co-create the city’s mobility strategy

Once a vision has been agreed upon, cities should define detailed mobility objectives, targets and indicators that will guide the planning process, and co-create a ‘mobility strategy’ with stakeholders and citizens, considering all modes of transport in the entire urban area.

In the case of CAD, this raises various challenges, as cities might struggle with the definition of realistic strategies, measurable targets and adequate indicators to assess progress of such an unknown and complex field.

These are some of the question that the CoEXist project attempts to answer, defining metrics to assess the impacts of CAVs in urban transport, in regard to traffic performance, space efficiency and safety.

Furthermore, in its goal of supporting cities to make structure and informed decisions about the comprehensive deployment of CAVs, CoEXist has developed an Automation-ready framework, which recommends a series of phases, and concrete measures, to facilitate the reduction of uncertainties and to ensure a smooth transition into the sustainable deployment of CAVs in cities. An overview of these guiding factors to be considered in the city’s strategy development is presented in the figure below.

Vision for mobility with CAVs: Mobility Strategy for Milton Keynes 2018 - 2036

Autonomous ‘last mile’ deliveries: Collaborative approach between the Council, Freight Quality Partnership, Transport Systems Catapult and the Open University to follow and possibly trial emerging autonomous delivery opportunities for the ‘last mile’ delivery. In liaison with industry partners consider the establishment of a Protocol for Personal Direct Delivery (PDD) trials to establish Milton Keynes as the centre for innovation and testing of new transport concepts on its local transport network (CoEXist 2018).
Figure 7: CoEXist's overview of phases towards automation-readiness, with examples of measures (CoEXist 2018)

4.3 Measure Planning

<table>
<thead>
<tr>
<th>Mobility Aspect</th>
<th>Automation Awareness</th>
<th>Planning for Automation Readiness</th>
<th>Implementation of Automation Ready Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td></td>
<td></td>
<td>Mobility pricing for 'SPAM roaming cars'</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Is there a conflict between people friendly vs. automation friendly?</td>
<td>Preparation of physical and digital infrastructure</td>
<td>Modifications to infrastructure and accompanying traffic code</td>
</tr>
<tr>
<td>Planning</td>
<td>Engagement with citizens & support testing activities and research</td>
<td>Update travel demand models and evaluate road capacity needs</td>
<td>Assessment of required land use changes based on integrated land use and transport modelling tools</td>
</tr>
<tr>
<td>Capacity Building</td>
<td>Try out level 1 & 2 functionalities</td>
<td>Identify new skill requirements – “less concrete more bytes”</td>
<td>Organisational restructuring for traffic management and public transport operations</td>
</tr>
<tr>
<td>Traffic Management</td>
<td>Road authorities need to engage with OEMs</td>
<td>Back office for data exchange in traffic management</td>
<td>Defining data management responsibility with new management schemes</td>
</tr>
</tbody>
</table>

Figure 8: Phase "Implementation and monitoring"

Measures that should be considered towards an effective and comprehensive deployment of CAVs range across various fields of action, including institutional transformation, adaptation of transport planning practices, development collective mobility services, optimisation and
strengthening of public transport, setting an adequate policy framework, and the potential adjustment of the city’s infrastructure design to better exploit the advantages of CAD (e.g., pick-up/drop-off areas and high-quality public space instead of parking spots). Its worth noting that the adaptation of the road infrastructure should not be required for correct functioning of automated road vehicles, but strategic changes might allow to fully exploit the benefits of this technology.

4.3.1 Institutional adjustments

Institutional adjustments are expected to happen in the future due to the changes that are likely to happen in relation to the increased deployment of intelligent transport systems, CAVs and MaaS services within the transport network of cities. This can be within institutions or agencies or maybe an entirely new department, and will heavily depend on the nature of the policies and regulations and the measures that are adopted in relation to connected and automated vehicles. For example, if CAVs are to operate as fleets controlled by operators, perhaps a new setup for traffic management units would be required. Government agencies could also be needing internal information and technology departments to deal with technical communications necessary with such traffic management or control units. Furthermore, issues of privacy and cyber/security should not be neglected when planning such institutional adjustments.

4.3.2 Infrastructural adjustments

Infrastructure adjustments, whether physical or digital, may be necessary at higher penetration rates of CAVs in order to improve traffic efficiency and safety for all modes in the transport network. Specific infrastructure adjustments need to be made in accordance with the mobility requirements in the different heterogeneous sections of the network. For instance, there might be changes needed for transition zones, where vehicles have to shift from an automated to manual mode. Transport models can test the necessary infrastructure adjustments that are needed to make transport networks more efficient and, in many cases, to make mobility safer for all modes. An AV-ready modelling environment will support sound decision-making.

4.3.3 Collective mobility services

In the future, services will be more integrated and multimodal. It is important that despite the comfort of CAVs, collective high occupancy shared mobility services should be encouraged and become the priority over privately owned or single occupancy CAVs to reach sustainable urban mobility goals in cities. New multimodal collective mobility services should also be subsidised as early as possible, if costs are to remain competitive, but this will mostly be determined by the business models that are to come in conjunction with such services. The UITP Policy Brief on ‘Autonomous vehicles: a potential game changer’ (UITP 2017) clearly sets out that cities need to support collective mobility solutions for CAVs and a culture of sharing to avoid an uncontrolled deployment of CAVs leading to single occupancy or empty CAVs in city centres in the future.

4.3.4 Policy measures

Authorities need to develop new regulatory frameworks to lead the transition to the new mobility era of sustainable and interconnected mobility with CAVs. New policies need to be adaptive and anticipatory, and based on a balanced governance. These could include pricing
of empty runs, occupancy-based pricing of services, etc. Authorities need to (re)assess and monitor the necessary characteristics and requirements of regulatory schemes and policies to accommodate new mobility services with CAVs while meeting cities’ economic, political and social ambitions. These policies will highly depend on the technological maturity in the next 15-20 years (or even more) and also on the economic conditions of the city and country, and their data management policies. The ongoing H2020 project GECKO, investigates these challenges. For more information, visit: h2020-gecko.eu (GECKO 2019).

4.4 Implementation and monitoring

Figure 9: Phase "Implementation and monitoring"

At this stage of the SUMP process, the implementation of resultant strategies and measures is planned and coordinated in detail. The innovative character of CAD-related actions, and their inherent degree of uncertainty, result in a complex implementation process which may not be any longer performed by the ‘SUMP team’, but by technical departments with a mostly quite specialised focus; therefore, the overall coordination of the implementation process requires particular attention.

Moreover, continuous monitoring, evaluation and reflection is especially relevant, when taking measures to handle automation in urban transport, as strategies might require adjustments in response to new developments in the field, and results from current implementation will help reduce uncertainties and guide future actions. Such a monitoring concept will allow to determine whether things are not going according to plan – and take corrective actions if necessary. Active participation is absolutely key at this stage, since implementing of innovative mobility schemes can be a great disruption (as well as a great benefit) for the daily travellers. Understanding public opinion, based on an active two-way dialogue, is crucial for a successful implementation process.
5. Key aspects of CAD planning

Besides following the SUMP principles and methodology, as well as the specific considerations described in the previous section, there are some key tools and activities that need to be taken into account to successfully address CAVs in urban mobility planning.

5.1 Learn about and experience road vehicle automation

Pilots and capacity building constitute a key initial measure to raise awareness and prepare the cities to respond to upcoming challenges

Many cities worldwide who have an edge in mobility, look into conducting pilots of different technologies, e.g. cooperative intelligent transport systems (C-ITS) or autonomous shuttles/last mile services, such as in the CityMobil2 project (CAD 2018), as part of their public transport system. Initiatives are increasing globally as most cities see the benefit in upscaling and shaping the development of AV technology, which opens up other innovation opportunities. However, before conducting a pilot, other measures from this early stage should be considered in advance as well. Pilots should be the result of a scenario building process including stakeholder engagement and assessing benefits of pilots. Furthermore, training is needed to ensure safe operations.

CityMobil2 Pilot

Pilots in Sardinia (Italy) led by the CityMobil2 project, tested automated vehicles in real-life urban environments. Two driverless buses, carrying up to 12 passengers each, have been piloted on a busy pedestrianised seafront promenade in Oristano. The route was about 1.3 km long and had seven stops. Passengers were allowed to travel for free but had to register first; minors were allowed on board, but only if the registration was signed by an adult. The pilot was organised in partnership with the Municipality of Oristano, the Regional public transport operator ARST, and the transport planning consultancy Company MLab (CAD 2018).

Figure 10: CityMobil2 pilot (CoEXist 2018)
5.2 Traffic flow and transport demand modelling

Many transport planning decisions affecting urban mobility and road infrastructure are based on the results of traffic flow and transport demand modelling. For this purpose, the availability of adapted simulation software is necessary, including new features and functionalities to allow for the accurate modelling of CAVs.

Micro- and macroscopic simulation of the coexistence of automated and conventional vehicles

Within the H2020 CoEXist project, significant progress has been made on the macro- and microscopic simulation capabilities to model CAVs and their interactions with conventional vehicles and other road users.

Co-simulations integrating AV driving logics (VEDECOM), vehicle (PreScan) and traffic simulators (PTV Vissim), were undertaken to derive behavioural parameters and test the simulator’s functionalities to be adjusted. The results were validated and calibrated using empirical data collected from real AV’s on DICTM test track in Helmond (NL). PTV Vissim, microscopic simulation software, was further developed to enable the simulation of CAV-behaviour, considering the differences in manoeuvre planning, car-following, lateral positioning and lane changing, among other aspects.

The results of the validated CAV-ready microsimulation model, were used to create assumptions for the supply-side of macroscopic models, which in turn, have developed functionalities to consider the relevant differences in AV user’s perception of travel time and Volume-Delay functions, among other parameters, to accurately simulate the impact of automated road vehicles on a city’s travel demand.

![Figure 11: Co-simulation of AVs within conventional traffic flows, with PTV’s Vissim and TASS International’s PreScan (CoEXist 2018)](image)

For more information: www.h2020-coexist.eu
5.3 Assessing the impacts of CAVs in urban mobility and road infrastructure

The capability of making structured and informed decisions about the comprehensive deployment of CAVs in a mixed road environment, requires a high-level understanding of the impacts different deployment scenarios can have on traffic, quality of life and stakeholders involved in local transport planning. It also commands institutional capacity to plan for a future with CAVs by using tools that accurately represent CAV behaviour in order to identify the impacts of different CAV deployment scenarios.

But, how can we get reliable evaluation results of socio-economic and sustainability impacts of CAV? Given that an ex ante evaluation is required, how can we build and assess realistic future scenarios for the evaluation?

The availability of accurate modelling tools, as seen in the previous section, is thus a key pre-requisite for such impact assessment. Still, it also needs to be defined which indicators are to be measured and how their analysis is to determine whether the deployment of AVs will be beneficial or not.

Among the different approaches that are being currently tested, CoEXist is evaluating the ‘automation-readiness’ of urban road infrastructure in eight use cases implemented in it’s four partner cities: Gothenburg, Helmond, Milton Keynes and Stuttgart. To determine whether the studied infrastructure allows the coexistence of automated vehicles, conventional vehicles and non-motorized road users, the project is evaluating whether it that can handle an introduction of automated vehicles without significant decline in traffic performance, space efficiency or traffic safety (CoEXist 2018).

5.4 CAD and Public Transport

Although new technologies and new services enabled by CAD have the potential to positively contribute to current societal challenges, there is still uncertainty about how the deployment of CAVs will unfold and what its impact will be. The possible various scenarios strongly depend on how CAVs are to be used and regulated. The implemented business models, normative, and resultant user-behaviour, could lead to more traffic, urban sprawl and congestion, or could “contribute to shaping sustainable and liveable cities, the regaining of urban space, less vehicles on the road and a higher quality of life” (UITP 2017).

Public transport remains the only available solution to respond to the high-levels of transport demand that arise in dense urban environments, in an efficient and space efficient manner. Which is why, as stated in UITP’s Policy Brief on automated vehicles, “the arrival of driverless autonomous vehicles represents a unique opportunity for a fundamental change in urban mobility and could lead to healthier, more competitive and greener cities – but only if public authorities and public transport companies take an active role now and integrate AVs into an effective public transport network” (UITP 2017).

AVs could dramatically enhance public transport, through car-sharing schemes and innovative services, such as shared ‘robo-taxis’ and mini-buses, by complementing rather than directly competing with it. Moreover, adopting AV technology in public transport services, e.g. autonomous buses and shuttles, would result in a significant reduction of operational costs and enable an extended supply of mobility services.
Nonetheless, as stated earlier, there is an essential need for structured coordination and information exchange among cities, at the national, European and global levels, in order to define consolidated needs, allow for market harmonization, markets, and enable the creation of economies of scale that ensure the optimal development of these new mobility services.

5.5 EU-funded projects for the development of automated driving

The European Union has strongly supported collaborative research contributing to automated driving, by funding numerous projects in the areas of: Networking, Coordination & Support, Infrastructure, Connectivity and Cooperative Systems, Driver Assistance Systems and Partial Automation and Highly Automated Road Transport. Figure 12 present an overview these projects (ERTRAC 2019).

Figure 12: Overview of a subset of EU funded projects that support development of automated driving (ERTRAC 2019)
6. List of references

Road vehicle automation in sustainable urban mobility planning
Practitioner Briefing